Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Constrained multi-objective evolutionary algorithm based on space shrinking technique
Erchao LI, Yuyan MAO
Journal of Computer Applications    2021, 41 (12): 3419-3425.   DOI: 10.11772/j.issn.1001-9081.2021060887
Abstract320)   HTML28)    PDF (979KB)(145)       Save

The reasonable exploration of the infeasible region in constrained multi-objective evolutionary algorithms for solving optimization problems with large infeasible domains not only helps the population to converge quickly to the optimal solution in the feasible region, but also reduces the impact of unpromising infeasible region on the performance of the algorithm. Based on this, a Constrained Multi-Objective Evolutionary Algorithm based on Space Shrinking Technique (CMOEA-SST) was proposed. Firstly, an adaptive elite retention strategy was proposed to improve the initial population in the Pull phase of Push and Pull Search for solving constrained multi-objective optimization problems (PPS), so as to increase the diversity and feasibility of the initial population in the Pull phase. Then, the space shrinking technique was used to gradually reduce the search space during the evolution process, which reduced the impact of unpromising infeasible regions on the algorithm performance. Therefore, the algorithm was able to improve the convergence accuracy while taking account of both convergence and diversity. In order to verify the performance of the proposed algorithm, it was simulated and compared with four representative algorithms including C-MOEA/D (adaptive Constraint handling approach embedded MOEA/D), ToP (handling constrained multi-objective optimization problems with constraints in both the decision and objective spaces), C-TAEA (Two-Archive Evolutionary Algorithm for Constrained multi-objective optimization) and PPS on the test problems of LIRCMOP series. Experimental results show that CMOEA-SST has better convergence and diversity when dealing with constrained optimization problems with large infeasible regions.

Table and Figures | Reference | Related Articles | Metrics